

Veryl: A New Hardware Description Language as an

Alternative to SystemVerilog

Naoya Hatta, PEZY Computing, K.K., Tokyo, Japan (hatta@pezy.co.jp)

Taichi Ishitani, PEZY Computing, K.K., Tokyo, Japan (ishitani@pezy.co.jp)

Ryota Shioya, The University of Tokyo, Tokyo, Japan (shioya@ci.i.u-tokyo.ac.jp)

Abstract— Veryl, a hardware description language based on SystemVerilog, offers optimized syntax tailored for

logic design, ensuring synthesizability and simplifying common constructs. It prioritizes interoperability with

SystemVerilog, allowing for smooth integration with existing projects while maintaining high readability. Additionally,

Veryl includes a comprehensive set of development support tools, such as package managers and real-time checkers,

to boost productivity and streamline the design process. These features empower designers to conduct high-quality

hardware design efficiently.

Keywords— hardware description language; logic design; SystemVerilog

I. INTRODUCTION

Hardware Description Languages (HDLs) are essential for designing digital circuits, with Verilog, VHDL, and

SystemVerilog being the most widely used. Verilog and VHDL, originating in the 1980s, do not incorporate

advanced language features that enhance abstraction and code reusability, unlike recent programming languages

that adopt object-oriented and functional paradigms. SystemVerilog extends Verilog with advanced features;

however, this complexity makes full support by electronic design automation (EDA) tools difficult and limits

usability. Additionally, these languages blend constructs for logic design and simulation, necessitating careful

selection by users. While modern programming languages provide productivity tools like auto-formatters and

linters, traditional HDLs lack these supportive environments, making development challenging.

There is an approach to constructing HDLs as domain-specific languages (DSLs) within existing programming

languages by extending their syntax and libraries. For example, Chisel [1], a DSL built on Scala, leverages the

advanced abstraction features of Scala to create highly reusable HDLs, while MyHDL [2] extends Python. This

approach benefits from the enhanced development tools and comprehensive libraries available for the base

programming language.

However, the existing approaches have specific limitations. Primarily, constructing an HDL as a DSL within a

programming language significantly constrains it by the syntax of the base language. This makes it difficult to

provide specialized syntax for hardware description. For example, essential elements in HDLs, such as arbitrary

bit-width representations, signal direction, and special signals like clock and reset, are not directly supported by the

underlying programming language. Consequently, these elements must often be expressed redundantly through

function calls or similar mechanisms.

Additionally, most existing approaches convert DSL code into Verilog code through compilers because many

EDA tools support only traditional HDLs like Verilog and VHDL. However, due to the advanced abstraction

capabilities of DSLs, this conversion often results in voluminous Verilog code that has significantly different

semantics from the original DSL. This discrepancy makes the Verilog code difficult to read and debug. Moreover,

ASIC design flows, such as timing closure and pre/post-mask engineering change order (ECO), frequently

necessitate partial modifications to the Verilog code. Predicting the extent of necessary changes in the Verilog code

from alterations in the DSL code is challenging, thereby complicating the application of these design flows.

To address the challenges, we are developing Veryl, a new hardware description language designed specifically

for logic design. Veryl transpiles source code into highly readable SystemVerilog, ensuring robust interoperability

2

with existing SystemVerilog codebases. It incorporates syntax elements from modern programming languages like

Rust and Go, which enhance expressiveness and productivity. Features such as automatic formatting, linting, and

real-time editor integration further boost its usability. In the subsequent sections, we will describe the features and

the advantages of Veryl.

II. HARDWARE DESCRIPTION LANGUAGE VERYL

A. Basic Syntax

The syntax of Veryl is based on SystemVerilog keywords and incorporates syntax improvements from modern

programming languages. In Figure 1, the same module is described in both SystemVerilog and Veryl to highlight

the basic syntactic differences. Marks such as ‘---○1 ’ are added for explanation and are not part of the source code.

• Documentation Comment: Comments that begin with ‘///’ are considered documentation comments, as

indicated at ○1 . These are syntactically distinct from regular comments, which start with ‘//’, and are

specifically used for generating documentation.

• Trailing Comma: Veryl supports a trailing comma after the last element in a comma-separated list, as

shown at ○2 . This feature not only eliminates the need to adjust commas when adding or removing elements

but also minimizes unnecessary differences in version control systems like Git.

• Simple Array Syntax: In SystemVerilog, the distinction between packed and unpacked arrays is made by

the placement of ‘[]’ either before or after the variable name. Veryl, however, uses ‘<>’ for packed arrays

and ‘[]’ for unpacked arrays, allowing for direct width specification as illustrated at ○3 . This approach

eliminates the redundant notation like ‘[WIDTH-1:0]’ that is commonly found in SystemVerilog.

• Type after Variable: In Veryl, the type is specified after the variable name, as demonstrated at ○4 . This

arrangement simplifies syntax parsing and supports abbreviated type notation by allowing omission of the

details following the colon.

// SystemVerilog code

// Counter

module Counter #(

 parameter WIDTH = 1

)(

 input logic i_clk ,

 input logic i_rst_n,

 output logic [WIDTH-1:0] o_cnt

);

 logic [WIDTH-1:0] r_cnt;

 always_ff @ (posedge i_clk or negedge i_rst_n) begin

 if (!i_rst_n) begin

 r_cnt <= 0;

 end else begin

 r_cnt <= r_cnt + 1;

 end

 end

 always_comb begin

 o_cnt = r_cnt;

 end

endmodule

// Veryl code

/// Counter -------------------------○1

module Counter #(

 param WIDTH: u32 = 1, -----------○2

)(

 i_clk: input clock ,

 i_rst: input reset ,

 o_cnt: output logic<WIDTH>, -----○3

){

 var r_cnt: logic<WIDTH>; --------○4

 always_ff { ---------------------○5

 if_reset {

 r_cnt = 0;

 } else {

 r_cnt += 1; -------------○6

 }

 }

 always_comb {

 o_cnt = r_cnt;

 }

}

Figure 1. Basic code example.

3

• Abbreviated Clock and Reset: In scenarios where there are only one clock and one reset within the scope,

Veryl allows for the omission of clock and reset specifications in ‘always_ff’ declarations, as illustrated at

○5 . Detailed information about clock and reset handling will be covered in the next section.

• Context-aware Assignment: SystemVerilog differentiates between blocking and non-blocking

assignments using ‘=’ and ‘<=’ operators, respectively. This distinction often leads to errors, such as using

‘=’ in ‘always_ff’ contexts causing unexpected synthesis result. Veryl simplifies this by using a single

assignment operator ‘=’, where the nature of the assignment—blocking or non-blocking—is determined by

the context, such as ‘always_ff’ or ‘always_comb’. This not only prevents common operator usage errors

but also enables the use of compound assignment operators like ‘+=’ in non-blocking contexts, as shown at

○6 .

B. Clock and Reset

Veryl introduces sophisticated syntax for clock and reset. Unlike SystemVerilog, which treats clock and reset

as regular variables, Veryl classifies them as dedicated types, distinctly separating them from regular variables. As

mentioned previously, this distinction enables the omission of clock and reset specifications in ‘always_ff’

declarations. Even in designs featuring multiple clocks and resets, modules typically operate with a single clock

and reset, allowing these specifications to be omitted in such cases. This approach facilitates concise descriptions

for most scenarios, while still providing the option to detail individual clocks and resets when necessary.

Furthermore, when implementing the same source code for both ASIC and FPGA targets, adjustments may be

necessary for the polarity and synchronicity of the reset. Veryl facilitates this by allowing configuration of the

polarity and synchronicity of clock and reset types during transpilation to SystemVerilog. In SystemVerilog, writing

reset conditions might require expressions like ‘if (!i_rst_n)’ or ‘if (i_rst)’ depending on the reset polarity.

In contrast, Veryl introduces a dedicated syntax for reset conditions, called ‘if_reset’, enabling the transpiler to

automatically generate appropriate reset conditions. For scenarios where polarity and synchronicity are fixed, Veryl

allows them to be explicitly defined using special types like ‘reset_async_high’, which denotes an asynchronous

active-high reset.

 Figure 2 demonstrates how different SystemVerilog code is generated from a single Veryl code by configuring

the clock and reset settings.

// Generated SystemVerilog code with

// clock_type = posedge

// reset_type = async_low

always_ff @ (posedge i_clk_a or negedge i_rst_a) begin

 if (!i_rst_a) begin

 end

end

always_ff @ (negedge i_clk_b or posedge i_rst_b) begin

 if (i_rst_b) begin

 end

end

// Generated SystemVerilog code with

// clock_type = negedge

// reset_type = sync_high

always_ff @ (negedge i_clk_a) begin

 if (i_rst_a) begin

 end

end

always_ff @ (negedge i_clk_b or posedge i_rst_b) begin

 if (i_rst_b) begin

 end

end

// Veryl code

module ModuleA (

 i_clk_a: input `a clock ,

 i_clk_b: input `b clock_negedge ,

 i_rst_a: input `a reset ,

 i_rst_b: input `b reset_async_high,

) {

 always_ff (i_clk_a, i_rst_a) {

 if_reset {

 }

 }

 always_ff (i_clk_b, i_rst_b) {

 if_reset {

 }

 }

}

Figure 2. Code example of clock and reset.

4

In the right upper code, the edge specification of ‘i_clk_a’ becomes ‘posedge’ because ‘posedge’ is specified

as ‘clock_type’. Similarly, the edge specification and reset condition of ‘i_rst_a’ are adjusted depending on

‘async_low’ which denotes asynchronous active-low reset. In the right lower code, ‘i_rst_a’ does not appear in

the sensitivity list because the specified reset type is ‘sync_high’, indicating synchronous active-high reset. The

generated code of ‘i_clk_b’ and ‘i_rst_b’ is not affected by clock and reset configuration because the type of

them has the specified polarity and synchronicity.

Additionally, clock domain annotation enables the identification of the clock domain to which each signal

belongs. The annotation is represented by identifier with a single quotation mark, such as ‘`a’. In the code shown

on the left of Figure 2, ‘i_clk_a’ and ‘i_rst_a’ belong to the same clock domain, ‘`a’, while ‘i_clk_b’ and

‘i_rst_b’ belong to the ‘`b’ domain. This annotation allows the Veryl compiler to detect unexpected clock domain

crossings. The expected clock domain crossing points are specified by the ‘unsafe (cdc)’ block, enabling

reviewers to focus their checks on these specific points.

C. Generics

SystemVerilog allows module and interface customization through parameter overrides during instantiation.

However, this customization is limited to elements that can be specified as parameters, such as values, but not to

elements like the names of modules to be instantiated. To address this limitation, Veryl introduces generics,

enabling more versatile descriptions of modules, interfaces, packages, functions, and structures.

 For example, consider the following code, which demonstrates a queue utilizing SRAM for storage. SRAM

module naming conventions vary across different intellectual property (IP) vendors or technology processes,

requiring SystemVerilog to duplicate code for each SRAM name or replace names through text macros. In contrast,

Veryl allows the insertion of the module name from the outside, decoupling the logic of the queue from the SRAM

module name. This approach significantly enhances code reusability.

III. VERYL COMPILER AND DEVELOPMENT ENVIRONMENT

Veryl is designed not only to advance as a hardware description language, as previously mentioned, but also to

boost productivity throughout the compiler and the entire development environment. In this section, we will explore

several key features offered by the Veryl compiler.

A. Semantic Check and Real-time Diagnostics

The Veryl compiler not only generates SystemVerilog code as a transpiler but also performs a range of semantic

checks to ensure code quality. Here are some examples of the checks it provides:

module SramQueue::<T> {

 inst u_sram: T;

 // queue logic

}

module Test {

 // Instantiate a SramQueue by SramVendorA

 inst u0_queue: SramQueue::<SramVendorA>();

 // Instantiate a SramQueue by SramVendorB

 inst u1_queue: SramQueue::<SramVendorB>();

}

Figure 3. Code example of generics.

5

• Detects duplication and undefined identifiers.

• Checks for multiple assignments, uninitialized variables, and unused variables.

• Prevents the unintended generation of latches.

• Ensures consistency between signal direction and assignment/reference.

• Ensures that module ports and function arguments are consistent with their invocation.

• Detects bit-width overflow in numerical literals.

Additionally, the Veryl compiler includes a language server that integrates with various text editors like Visual

Studio Code [3] and Vim [4]. Operating under the Language Server Protocol [5], established by Microsoft, this

server communicates with the editor to provide real-time feedback during the editing process as illustrated in Figure

4. This feedback includes the results of semantic checks, which can correct errors typically identified by costly

linting tools or during the logic synthesis stage in traditional SystemVerilog workflows.

B. Interoperability with SystemVerilog

User-defined types in Veryl, such as modules, interfaces, packages, and structures, are fully equivalent to those

in SystemVerilog, enabling mutual referencing. This compatibility facilitates the gradual integration of Veryl into

existing projects by either combining it with existing SystemVerilog code or by rewriting parts of those projects in

Veryl.

Furthermore, with debuggers and waveform viewers that support SystemVerilog, developers can directly

interact with Veryl-defined types, which enhances debugging efficiency.

Additionally, the correspondence of variables and ‘always_ff’ declaration between Veryl code and the

generated SystemVerilog code ensures seamless integration into ASIC workflows, including timing closure and

ECO.

C. Library Support

In recent years, the practice of utilizing a vast array of open-source libraries to build large-scale software has

become prevalent among programming languages. Similarly, Veryl incorporates features that facilitate the efficient

use of existing libraries, enabling developers to seamlessly integrate diverse resources into their projects.

For example, developers can seamlessly integrate external libraries into their Veryl projects by simply adding

the specified entry to the project definition file, as demonstrated in Figure 5. This entry imports the designated Git

repository, enabling the utilization of modules, interfaces, and packages defined within that library.

[dependencies]

"https://github.com/veryl-lang/sample" = "0.1.0"

Figure 4. Real-time diagnostics.

Figure 5. Configuration example to use library.

6

Furthermore, documentation is a crucial element when using libraries. Typically, when each library author

chooses their preferred location and format for documentation, users must individually search for and extract

necessary information from each library, which can be cumbersome. In Veryl, however, the compiler supports

automatic documentation generation. The documentation comments within the source code are compatible with

CommonMark [6] syntax and can include waveforms in WaveDrom [7] format. The Veryl compiler interprets these

comments, extracts information about modules, interfaces, and packages, and automatically generates consistently

formatted documentation, as illustrated in Figure 6 from the provided source code.

IV. CONCLUSION

Veryl is a new hardware description language tailored for logic design, featuring specialized syntax and high

interoperability with SystemVerilog. It also offers comprehensive compiler and development environment support

to enhance productivity. Developed as open-source software, Veryl is publicly available at https://github.com/veryl-

lang/veryl, with the aim of achieving widespread adoption.

ACKNOWLEDGMENT

Thank you to everyone who participated in discussions about the language and tool design at

https://github.com/veryl-lang/veryl, and to those who contributed to the source code.

REFERENCES

[1] J. Bachrach et al., "Chisel: Constructing hardware in a Scala embedded language," DAC Design Automation Conference 2012, San

Francisco, CA, USA, 2012, pp. 1212-1221, doi: 10.1145/2228360.2228584.

[2] Keerthan Jaic and Melissa C. Smith. 2015. Enhancing Hardware Design Flows with MyHDL. In Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA '15). Association for Computing Machinery, New York, NY,

USA, 28–31. https://doi.org/10.1145/2684746.2689092

[3] “Visual Studio Code - Code Editing. Redefined”, https://code.visualstudio.com, accessed in May. 2024

[4] “welcome home : vim online”, https://www.vim.org, accessed in May. 2024

[5] “Official page for Language Server Protocol”, https://microsoft.github.io/language-server-protocol/, accessed in May. 2024

[6] “CommonMark”, https://commonmark.org, accessed in May. 2024

[7] “WaveDrom - Digital timing diagram everywhere”, https://wavedrom.com, accessed in May. 2024

/// This is a sample module.

///

/// ```wavedrom

/// {signal: [

/// {name: 'i_clk', wave: 'p......'},

/// {name: 'i_dat', wave: 'x.=x...', data: ['data']},

/// {name: 'o_dat', wave: 'x...=x.', data: ['data']},

///]}

/// ```

pub module Sample #(

 /// Data Width

 param WIDTH: u32 = 1,

) (

 i_clk: input clock , /// Clock

 i_dat: input logic<WIDTH>, /// Input Data

 o_dat: output logic<WIDTH>, /// Output Data

) {}

Figure 6. Documentation generation.

